47 research outputs found

    Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium

    Get PDF
    In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings. In this respect, we explore the underlying physical mechanisms responsible for it. This study identifies areas, depending on the season, in which a direct comparison between model simulations of precipitation and climate reconstructions would be meaningful, but also other areas where good agreement between them should not be expected even if both are perfect

    Associated factors to the control Of cardiovascular risk in a low-income population from the caribbean region of Colombia

    Get PDF
    To identify associated factors to the control of blood pressure (BP), low-density lipoprotein cholesterol (LDL) and glycated hemoglobin (hba1c) in a low-income population from the Caribbean region of Colombia, enrolled in “De todo corazón -DTC” program between 2013-201

    Effectiveness of a cardiovascular disease prevention program in the control of cardiovascular risk factors in a low-income population from the caribbean region of Colombia

    Get PDF
    To evaluate the effectiveness of a cardiovascular disease prevention program in the control of cardiovascular risk factors in a low-income population from the Caribbean region of Colombi

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Delayed intracerebral hemorrhage after ventriculoperitoneal shunt insertion: case report and literature review

    No full text
    Presentamos un caso de hemorragia intracerebral tardía tras la colocación de una derivación ventriculoperitoneal. Una paciente de 64 años de edad, con hidrocefalia secundaria a una hemorragia subaracnoidea, sufre una hemorragia intraparenquimatosa occipital derecha con hemorragia intraventricular secundaria seis días después de la intervención quirúrgica. Se trata de una complicación rara de la derivación ventriculoperitoneal, con pocos casos publicados anteriormente. El mecanismo supuesto es la erosión de un vaso sanguíneo secundaria a un íntimo contacto con el catéter proximal de la derivación; trastornos sanguíneos, malformaciones vasculares cerebrales, traumatismo craneal o tumor cerebral fueron excluidos en esta pacient

    Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an Online Coupled Climate-Chemistry Model over Europe

    No full text
    Aerosol-cloud interactions (ACI) represent one of the most important sources of uncertainties in climate modelling. In this sense, realistic simulations of ACI are needed for a better understanding of the complex interactions between air pollution and the climate system. This work quantifies the added value of including ACI in an online coupled climate/chemistry model (WRF-Chem, 0.44 ∘ horizontal resolution, years 2003 to 2010) in order to assess whether there is an improvement in the representation of aerosol optical depth (AOD). Modelling results for each species have been evaluated against the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, and AOD at 675 nm has been compared to AERONET data. Results indicate that the improvements of the monthly biases are around 8% for total AOD550 when including ACI, reaching 20% for the monthly bias in AOD550 coming from dust. Moreover, the temporal representation of AOD550 largely improves (increase in the Pearson time correlation coefficients), ranging from 6% to 20% depending on the chemical species considered. The benefits from this improvement overcome the problems derived from the high computational time required in ACI simulations (eight times higher with respect to simulations not including aerosol-cloud interactions)
    corecore